3.6 Derivatives of Logarithmic Functions

In this section we use implicit differentiation to find the derivative of the logarithmic functions $y = \log_b x$ and $y = \ln(x)$.

To prove the derivatives of the functions above, we need the following derivative.

$$\frac{d}{dx}[b^x] = b^x \ln(b)$$

Let's find the derivative of $y = \log_b x$.

Using the exponential definition we can write $y = \log_b x$ as $b^y = x$.

$$\frac{d}{dx}[b^{y}] = \frac{d}{dx}[y]$$

$$b^{y}\ln(b) y' = 1 \quad \text{solve for } y'$$

$$y' = \frac{1}{b^{y}\ln(b)} \quad (b^{y} = x) \text{ substitute}$$

$$y' = \frac{1}{x\ln(b)}$$

$$\frac{d}{dx}[\log_b x] = \frac{1}{x\ln(b)}$$

If we let b = e, for $y = \ln(x) \rightarrow e^y = x$. Take the derivative of $e^y = x$ implicitly with respect to x.

$$\frac{d}{dx}[e^{y}] = \frac{d}{dx}[x]$$

$$e^{y} \cdot \ln e \cdot y' = 1 \qquad \text{Solve for } y'.$$

$$y' = \frac{1}{e^{y}} \qquad y = \ln(x) - \text{substitute}$$

$$y' = \frac{1}{e^{\ln x}}$$

$$y' = \frac{1}{x} \text{ therefore } \frac{d}{dx}[\ln x] = \frac{1}{x}$$

In general, using the chain rule we get: $\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx} = \frac{u'}{u}$ or $\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)}f'(x) = \frac{f'(x)}{f(x)}$

Example: Find
$$\frac{d}{dx}[\ln(\cos(x))]$$

 $\frac{d}{dx}[\ln(\cos(x))] = \frac{1}{\cos(x)} \cdot -\sin(x)$
 $= -\frac{\sin(x)}{\cos(x)}$
 $= -\tan(x)$

Example: Differentiate $f(x) = \log_{10}(1 + \cos(x))$ Using $\frac{d}{dx}[\ln f(x)] = \frac{1}{f(x)}f'(x) = \frac{f'(x)}{f(x)}$ $f'(x) = \frac{1}{(1 + \cos(x)) \cdot \ln(10)} \cdot -\sin(x) = \frac{-\sin(x)}{\ln(10)(1 + \cos(x))}$ **Example:** Given: $f(x) = (\ln x)^2 \cdot \sin(x)$, find f'(x) (This will use the product rule, natural log rule & chain rule.) Let $(\ln x)^2$ = the first part and $\sin(x)$ = the second part.

d-first = $2\frac{\ln x}{x}$ and d-second = $\cos(x)$ $f'(x) = \text{first} \cdot \text{d-second} + \text{second} \cdot \text{d-first}$ $f'(x) = (\ln x)^2 \cos(x) + \sin(x) \left(2\frac{\ln x}{x}\right)$

Example: Differentiate $y = \tan[\ln(ax + b)]$ Using substitution may make this problem easier. (The a & b are constants.) Let $u = \ln(ax + b)$. Remember that the derivative of $\tan(u) = \sec^2(u) \cdot u'$ and $u' = \frac{a}{ax+b}$ $y' = \sec^2(\ln(ax + b)) \cdot \frac{a}{ax+b}$

Logarithmic Differentiation

The calculations of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking the logarithm of the entire equation. This method is called **Logarithmic Differentiation**.

Steps in Logarithmic Differentiation

1. Take the natural logarithm of both sides of an equation and use the laws of logarithms to simplify

- 2. Differentiate implicitly with respect to x.
- 3. Solve the resulting equation for y'.

Example: Differentiate the following using logarithmic differentiation.

a)
$$y = x^{x}$$
 b) $y = (\cos x)^{x}$

a) $y = x^{x}$ $\ln(y) = \ln(x^{x})$ $\ln(y) = x\ln(x)$ Implicit Diff. $\frac{1}{y}y' = \ln(x) + x \cdot \frac{1}{x}$ $\frac{1}{y}y' = \ln(x) + 1$ Solve for y' $y' = y(\ln(x) + 1)$ Remember $y = x^{x}$ $y' = (\cos x)^{x} (-x \tan(x) + \ln(\cos x))$ $y' = (\cos x)^{x} (-x \tan(x) + \ln(\cos x))$ $y' = (\cos x)^{x} (-x \tan(x) + \ln(\cos x))$

c) $y = (\ln(x))^{\cos(x)}$

a) $y = (\ln(x))^{\cos(x)}$ $\ln(y) = \ln((\ln(x))^{\cos(x)})$ Use Power rule of logs $\ln(y) = \cos(x) \cdot \ln(\ln(x))$ Differentiate implicitly with logs and product rule $\frac{y_{i}}{y} = \cos(x) \cdot \left(\frac{1}{\ln(x)} \cdot \frac{1}{x}\right) + \ln(\ln(x)) \cdot (-\sin(x))$ Solve for y'. $y' = y \left[\cos(x) \cdot \left(\frac{1}{\ln(x)} \cdot \frac{1}{x}\right) + \ln(\ln(x)) \cdot (-\sin(x))\right]$ substitute $(\ln(x))^{\cos(x)}$ in for y $y' = (\ln(x))^{\cos(x)} \left[\cos(x) \left(\frac{1}{\ln(x)} \cdot \frac{1}{x}\right) + \ln(\ln(x)) \cdot (-\sin(x))\right]$ simplify $y' = (\ln(x))^{\cos(x)} \left[\frac{\cos(x)}{x\ln(x)} - \sin(x)\ln(\ln(x))\right]$